Recent developments in genetic and molecular biology have excited world-wide interest in biotechnology. The ability to manipulate DNA has already changed our perceptions of medicine, agriculture and environmental management. Scientific breakthroughs in gene expression, protein engineering and cell fusion are being translated by a strengthening biotechnology industry into revolutionary new products and services. Many a student has been enticed by the promise of biotechnology and the excitement of being near the cutting edge of scientific advancement. However, the value of biotechnology is more likely to be assessed by business, government and consumers alike in terms of commercial applications, impact on the marketplace and financial success. Graduates trained in molecular biology and cell manipulation soon realise that these techniques are only part of the complete picture; bringing about the full benefits of biotechnology requires substantial manufacturing capability involving large-scale processing of biological material. For the most part, chemical engineers have assumed the responsibility for bioprocess development. However, increasingly, biotechnologists are being employed by companies to work in co-operation with biochemical engineers to achieve pragmatic commercial goals. Yet, while aspects of biochemistry, microbiology and molecular genetics have for many years been included in chemical-engineering curricula, there has been relatively little attempt to teach biotechnologists even those qualitative aspects of engineering applicable to process design.
The primary aim of this book is to present the principles of bioprocess engineering in a way that is accessible to biological scientists. It does not seek to make biologists into bioprocess engineers, but to expose them to engineering concepts and ways of thinking. The material included in the book has been used to teach graduate students with diverse backgrounds in biology, chemistry and medical science. While several excellent texts on bioprocess engineering are currently available, these generally assume the reader already has engineering training. On the other hand, standard chemical-engineering texts do not often consider examples from bioprocessing and are written almost exclusively with the petroleum and chemical industries in mind. There was a need for a textbook which explains the engineering approach to process analysis while providing worked examples and problems about biological systems. In this book, more than 170 problems and calculations encompass a wide range of bioprocess applications involving recombinant cells, plant- and animal-cell cultures and immobilised biocatalysts as well as traditional fermentation systems. It is assumed that the reader has an adequate background in biology.
0 comments:
Post a Comment