Thursday, 22 August 2013

Clinical Immunology: Principles and Practice, Third Edition

Clinical Immunology: Principles and Practice has emerged from this concept of the clinical immunologist as both primary care physician and expert consultant in the management of patients with immunologic diseases. It opens in full appreciation of the critical role of fundamental immunology in this rapidly evolving clinical discipline. Authors of basic science chapters were asked, however, to cast their subjects in a context of clinical relevance. We believe the result is a well-balanced exposition of basic immunology for the clinician.

The initial two sections on basic principles of immunology are followed by two sections that focus in detail on the role of the immune system in defenses against infectious organisms. The approach is two-pronged. It begins first with a systematic survey of immune responses to pathogenic agents followed by a detailed treatment of immunologic deficiency syndromes. Pathogenic mechanisms of both congenital and acquired immune deficiency diseases are discussed, as are the infectious complications that characterize these diseases. Befitting its importance, the subject of HIV infection and AIDS receives particular attention, with separate chapters on the problem of infection in the immuno compromised host, HIV infection in children, anti-retroviral therapy and current progress in the development of HIV vaccines.

The classic allergic diseases are the most common immunologic diseases in the population, ranging from atopic disease to drug allergy to organ-specific allergic disease (e.g., of the lungs, eye and skin). They constitute a foundation for the practice of clinical immunology, particularly for those physicians with a practice orientation defined by formal subspecialty training in allergy and immunology. A major section is consequently devoted to these diseases, with an emphasis on pathophysiology as the basis for rational management.

Molecular Biology of Gene, Fifth Edition


The long-awaited new edition of James D. Watson's classic text, Molecular Biology of the Gene, has been thoroughly revised and is published to coincide with the 50th anniversary of Watson and Crick's paper on the structure of the DNA double-helix. Twenty-one concise chapters, co-authored by five highly respected molecular biologists, provide current, authoritative coverage of a fast-changing discipline, giving both historical and basic chemical context. Divided into four parts: Genetics and Chemistry, Central Dogma, Regulation, and Methods. For college instructors, students, and anyone interested in molecular biology and genetics. 

James D. Watson was Director of Cold Spring Harbor Laboratory from 1968 to 1993 and is now its President. He spent his undergraduate years at the University of Chicago and received his Ph.D. in 1950 from Indiana University. Between 1950 and 1953, he did postdoctoral research in Copenhagen and Cambridge, England. While at Cambridge, he began the collaboration that resulted in the elucidation of the double-helical structure of DNA in 1953. (For this discovery, Watson, Francis Crick, and Maurice Wilkins were awarded the Nobel Prize in 1962.) Later in1953, he went to the California Institute of Technology. He moved to Harvard in 1955, where he taught and did research on RNA synthesis and protein synthesis until 1976. He was the first Director of the National Center for Genome Research of the National Institutes of Health from 1989 to 1992. Dr. Watson was sole author of the first, second, and third editions of Molecular Biology of the Gene, and a co-author of the fourth edition. These were published in 1965, 1970, 1976, and 1987 respectively. Watson has also been involved in two other textbooks: he was one of the original authors of Molecular Biology of the Cell and is also an author of Recombinant DNA: a short course.Tania A. Baker is the Whitehead Professor of Biology at the Massachusetts Institute of Technology and an Investigator of the Howard Hughes Medical Institute. She received a B.S. in biochemistry from the University of Wisconsin, Madison, and a Ph.D. in biochemistry from Stanford University in 1988. Her graduate research was carried out in the laboratory of Professor Arthur Kornberg and focused on mechanisms of initiation of DNA replication. She did postdoctoral research in the laboratory of Dr. Kiyoshi Mizuuchi at the National Institutes of Health, studying the mechanism and regulation of DNA transposition. Her current research explores mechanisms and regulation of genetic recombination, enzyme-catalyzed protein unfolding, and ATP-dependent protein degradation. Professor Baker received the 2001 Eli Lilly Research Award from the American Society of Microbiology and the 2000 MIT School of Science Teaching Prize for Undergraduate Education. She is co-author (with Arthur Kornberg) of the book DNA Replication, Second Edition.Stephen P. Bell is a Professor of Biology at the Massachusetts Institute of Technology and an Assistant Investigator of the Howard Hughes Medical Institute. He received B.A. degrees from the Department of Biochemistry, Molecular Biology, and Cell Biology and the Integrated Sciences Program at Northwestern University and a Ph.D. in biochemistry at the University of California, Berkeley in 1991. His graduate research was carried out in the laboratory of Robert Tjian and focused on eukaryotic transcription. He did postdoctoral research in the laboratory of Dr. Bruce Stillman at Cold Spring Harbor Laboratory, working on the initiation of eukaryotic DNA replication. His current research focuses on the mechanisms controlling the duplication of eukaryotic chromosomes. Professor Bell received the 2001 ASBMBÐSchering Plough Scientific Achievement Award, and the Everett Moore Baker Memorial Award for Excellence in Undergraduate Teaching at MIT in 1998. Alexander Gann is Editorial Director of Cold Spring Harbor Laboratory Press, and a faculty member of the Watson School of Biological Sciences at Cold Spring Harbor Laboratory. He received his B.Sc in microbiology from University College London and a Ph.D. in molecular biology from The University of Edinburgh in 1989. His graduate research was carried out in the laboratory of Noreen Murray and focused on DNA recognition by restriction enzymes. He did postdoctoral research in the laboratory of Mark Ptashne at Harvard, working on transcriptional regulation, and that of Jerem.






Wednesday, 21 August 2013

Calculations of Molecular Biology and Biotechnology

Mathematics is a beautiful and elegant way of expressing order. I have heard it called a universal language. If true, then there are many dialects. There are any number of ways to approach a problem, no one of them necessarily more legitimate than another. I have always found interesting the passion and fervor people attach to their particular approach to mathematics. "Why do you do the problem that way?" I might be asked. "Clearly," my critic continues, "if you solve the problem this way, it's much quicker, more logical, and easier to follow. This is the only way that makes any sense." Well, maybe to them. Not everyone's brain works in the same way. In solving a problem in concentration, for example, it is probably amenable to solution by using a relationship of ratios, or C1V1 = C2V2, or the approach most often taken in this book. In actuality, they are all variations on a theme. Any one of them will get you the answer. Therein, I believe, lies the very beauty of mathematics.

It wasn't until this last year that I discovered the approach that I take to most of the problems encountered in the molecular biology laboratory has a name. It is called dimensional analysis. I always thought of it as "canceling terms." My brain is comfortable with this method. Many have tried to convert me to the use of the C1V1 = C2V2 approach, but all have failed. I have been chided and ridiculed by some for the manner in which I solve problems. I have been applauded by others. When I learned that the approach I take has the name dimensional analysis, I felt, in a way, like the person who visits the doctor with some inexplicable malady and who is reassured when the doctor attaches some Latin-sounding name to it. At least then, the individual knows that other people must also have the affliction, that it has been studied, and that there may even be a cure.

CLICK HERE TO DOWNLOAD 

Monday, 19 August 2013

Biotechnology: Applying the Genetic Revolution

Biotechnology: Applying the Genetic Revolution explains how the information from the genetic revolution is being used to answer some of these questions. It informs the reader about the many avenues where biotechnology has changed the original field of study. The first few chapters provide a clear and concise review of the basics of molecular biology. These topics are explained in more detail in the first book of this series, entitled Molecular Biology: Understanding the Genetic Revolution . This review will take the student through the basics, including DNA structure, gene expression, and protein synthesis, as well as survey the variety of organisms used in biotechnology research. The student is then presented with the basic methodologies used in biotechnology research. Chapter 3 explains how nucleic acids are isolated, cloned into humanmade genetic vehicles, and then reinserted into one of the model organisms for in-depth analysis. The next two chapters discuss in more detail various techniques that have been developed to investigate the function of genes. Chapter 4 focuses on DNA, dealing with both in vivo and in vitro synthesis of DNA and the polymerase chain reaction. Chapter 5 focuses on RNA, explaining antisense technology, RNA interference, and ribozymes. Familiarity with these chapters is critical to understanding the rest of the textbook.

Biochemistry, Fourth Edition

Biochemistry is a field of enormous fascination and utility, arising, no doubt, from our own self-interest. Human welfare, particularly its medical and nutritional aspects, has been vastly improved by our rapidly growing understanding of biochemistry. Indeed, scarcely a day passes without the report of a biomedical discovery that benefits a significant portion of humanity. Further advances in this rapidly expanding field of knowledge will no doubt lead to even more spectacular gains in our ability to understand nature and to control our destinies. It is therefore essential that individuals embarking on a career in biomedical sciences be well versed in biochemistry. 

This textbook is a distillation of our experiences in teaching undergraduate and graduate students at the University of Pennsylvania and Swarthmore College and is intended to provide such students with a thorough grounding in biochemistry.We assume that students who use this textbook have had the equivalent of one year of college chemistry and sufficient organic chemistry so that they are familiar with basic principles and nomenclature.We also assume that students have taken a one-year college course in general biology in which elementary biochemical concepts were discussed. Students who lack these prerequisites are advised to consult the appropriate introductory textbooks in those subjects.

CLICK HERE TO DOWNLOAD 

Molecular Biotechnology: Principles and Applications of Recombinant DNA Technology

Molecular biotechnology emerged as a new research field that arose as a result of the fusion in the late 1970s of recombinant DNA technology and traditional industrial microbiology. Whether one goes to the movies to see Jurassic Park with its ingenious but scientifically untenable plot of cloning dinosaurs, reads in the newspaper about the commercialization of a new “biotech” tomato that has an extended shelf life, or hears one of the critics of molecular biotechnology talking about the possibility of dire consequences from genetic engineering, there is a significant public awareness about recombinant DNA technology. In this book, we introduce and explain what molecular biotechnology actually is as a scientific discipline, how the research in the area is conducted, and
how this technology may realistically impact on our lives in the future. We have written Molecular Biotechnology: Principles and Applications of Recombinant DNA to serve as a text for courses in biotechnology, recombinant
DNA technology, and genetic engineering or for any course introducing both the principles and the applications of contemporary molecular biology methods. The book is based on the biotechnology course we have offered for the past 12 years to advanced undergraduate and graduate students from the biological and engineering sciences at the University of Waterloo. We have written this text for students who have an understanding of basic ideas from biochemistry, molecular genetics, and microbiology. We are aware that it is unlikely that students will have had all of these courses before taking a course on biotechnology. Thus, we have tried to develop the topics in this text by explaining their broader biological context before delving into molecular details. This text emphasizes how recombinant DNA technology can be used to create various useful products. We have, wherever possible, used experimental results and actual methodological strategies to illustrate basic concepts,
and we have tried to capture the flavor and feel of how molecular biotechnology operates as a scientific venture. The examples that we have selected—from a vast and rapidly growing literature—were chosen as case studies that not only illustrate particular points but also provide the reader with a solid basis for understanding current research in specialized areas of molecular biotechnology. Nevertheless, we expect that some of our examples will be out of date by the time the book is published, because molecular
biotechnology is such a rapidly changing discipline.

For the ease of the day-to-day practitioners, scientific disciplines often develop specialized terms and nomenclature. We have tried to minimize the use of technical jargon and, in many instances, have deliberately used a simple phrase to describe a phenomenon or process that might otherwise have been expressed more succinctly with technical jargon. In any field of study, synonymous terms that describe the same phenomenon exist. In molecular biotechnology, for example, recombinant DNA technology, gene cloning, and genetic engineering, in a broad sense, have the same meaning. When an important term or concept appears for the first time in this text, it is followed in parentheses with a synonym or equivalent expression. An extensive glossary can be found at the end of the book to help the reader with the terminology of molecular biotechnology.

Thursday, 25 July 2013

Journal of Medicinal Chemistry- February 2013 Vol 56 No.3,4

Journal of Medicinal Chemistry- February 14, 2013 Vol 56 No.3
About the cover page:

Novel AMF-26-induced Golgi disruption, apoptosis, and cancer-cell growth inhibition through a mechanism for preventing the ADP-ribosylation factor 1 activation. Golgi apparatus sorts and modifies hormones, enzymes, and other key proteins for transport elsewhere. Laboratory tests showed that the synthetic AMF-26 is just as effective as its natural counterpart and kills cancer cells differently than existing medicines.

View the article 
Total Synthesis of AMF-26, an Antitumor Agent for Inhibition of the Golgi System, Targeting ADP-Ribosylation Factor 1, isamu shiina et al., tokyo university of science. 





Journal of Medicinal Chemistry- February 28 2013 Vol 56 No.4























DOWNLOAD THE JOURNAL HERE

Friday, 12 July 2013

Synthesis of Essential Drugs

This book, as is often the case with many others, represents an attempt to express a long overdue need of compiling information which has accumulated over the course of more than 30 years of our work in the area of the synthesis of medical drugs and 7 years of work on the book itself. In our opinion, the result can fill obvious gaps that exist in literature of this kind.

This book turned out to be different than what was originally planned. It was intended to show the synthesis of medications in action. For a few drugs, it was aimed at showing the synthesis of a body of potentially active substances that came about as a result of collaboration between chemists, biologists, pharmacologists, toxicologists, and others of various specialties. New drugs sometimes resulted from the application of capabilities provided by a new reagent or by a newly accessible derived substance. It was intended to briefly touch on the history of formation for at least a few drugs. We would like to share certain curious incidents that occurred while working with them, and to share the extremely curious histories behind the creation of their names and likewise the interesting histories associated with the change in the area of medicinal usage after undergoing clinical trials. However, at this moment in time, we understand that we are crossing the borders of the possible size for one book, and this work cannot be completed by a reasonable deadline. Therefore, with few alternative approaches, we decided on the proposed, realistic option of presenting the synthesis of various groups of drugs in basically the same manner in which they are traditionally presented in pharmacological curriculum. This was done with a very specific goal—to harmonize the chemical aspects with the pharmacological curriculum that is studied by future physicians and pharmacists. 

Practically every chapter begins with a universally accepted definition of the drug, the present model of its activity, a brief description of every group, classification of the medications to be examined, and also with a description of specific syntheses, each of which relates to the usage of the given drug. Of the thousands of drugs in circulation on the pharmaceutical market, these are mainly medicinal drugs that are included under their generic names in the ‘Essential List of Drugs’ that is recommended by the World Health Organization (WHO).

For practically all of the 700+ drugs, which is more than twice the number of those on “The List”, references to the methods of synthesis (around 2350) are given along with the most widespread synonyms. However, in an attempt to avoid any misunderstanding, the names are given only as their basic generic names. The largest chapter, Antibiotics, does not formally belong in the book under that name, but since the primary attention of this chapter is focused on the description of the synthetic portions of the derivation of semisynthetic antibiotics, we think that it should definitely be included in this book.

Principle of Organic Medicinal Chemistry

Principles of Organic Medicinal Chemistry is concerned with chemistry, synthesis, structure activity relationships, properties and uses of drugs of carbon compounds. This book has primarily been written with the aim of meeting the needs and interests of undergraduate and graduate pharmacy course according to syllabi of various Indian Universities. The book is a concise form covering all newer drugs will help the readers to a great extent. Though several books are available on medicinal chemistry, the material in most of them is present in a diffused form or highly specialized. In the ever expanding knowledge of the chemistry of drugs it is very difficult to go through the various textbooks, journals, and pharmacopoeias. The major objective of writing this book is to present the information in a lucid, condensed and cohesive form, to cater specially the needs of undergraduate and graduate students of pharmacy.It is hoped that the book will be received favorably as an effective text book by both students and teachers of pharmacy, science a
nd medical scientists.