Sunday, 20 October 2013

Sex Determination in Fish

Sex Determination in Fish is the first to report that research in allogenics/xenogenics has conclusively shown that fishes have retained bisexual potency even after sexual maturity and spermiation. The XY genotype found in the unexpected female phenotypes sired by supermales (Y1Y2) and androgenic males (Y2Y2) points out the need to employ sex specific molecular markers to identify the true genotype of a juvenile, which matures either as a male or female, depending upon the sex of its pair (female or male) and thereby critically assessing the environmental role in sex determination. This book is meant to assist molecular biologists in the search of sex determining gene(s), fishery biologists endeavouring to develop techniques for profitable monosex aquaculture and ecologists interested in conservation of fishes and their genomes.

The title of the book is a ‘hot area’ of research. Not surprisingly, there are many reviews and books on this topic. However, these are more concerned with sex differentiation than sex determination; they have not considered unisexualism in the context of sex determination in fishes. In an attempt to find clues to resolve the riddle of sex determination in fishes, this comprehensive book explores it from cytogenetics through hybrids, gynogenics, androgenics, ploidies, allogenics/xenogenics to sexonomics of gonochores, hermaphrodites and unisexuals. About 77 and 50% of references cited here are dated after 1991 and 2001, respectively; they were collected from widely scattered 375 sources of journals, book proceedings, theses and so on. As the book is a continuum of the earlier book ‘Sexuality in Fishes’, there are a few unavoidable but obligatorily required duplications to keep each chapter complete and independent, besides pointing out areas of research requiring critical inputs. None of the earlier reviews/books have ever considered allogenics/xenogenics; this book is the fi rst to report that researches in this frontier area have conclusively shown that fishes have retained bisexual potency even after sexual maturity and spermiation. The XY genotype found in the unexpected female phenotypes sired by supermales (Y1Y2) and androgenic males (Y2Y2) points out the need to employ sex specific molecular markers to identify the true genotype of a juvenile, which matures either as a male or female, depending upon the sex of its pair (female or male) and thereby critically assess the environmental role in sex determination.


Categories:

0 comments:

Post a Comment